Serveur d'exploration Sophie Germain

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

On sets X \subseteq \mathbb{N} for which we know an algorithm that computes a threshold number t(X) \in \mathbb{N} such that X is infinite if and only if X contains an element greater than t(X)

Identifieur interne : 000000 ( Main/Exploration ); suivant : 000001

On sets X \subseteq \mathbb{N} for which we know an algorithm that computes a threshold number t(X) \in \mathbb{N} such that X is infinite if and only if X contains an element greater than t(X)

Auteurs : Apoloniusz Tyszka [Pologne]

Source :

RBID : Hal:hal-01614087

English descriptors

Abstract

Let Γ_{n}(k) denote (k−1)!, where n∈{3,…,16} and k∈{2}∪{2^{2^{n−3}}+1, 2^{2^{n−3}}+2, 2^{2^{n−3}}+3,…}. For an integer n∈{3,…,16}, let Σ_n denote the following statement: if a system of equations S⊆{Γ_{n}(x_i)=x_k: i,k∈{1,…,n}}∪{x_i⋅x_j=x_k: i,j,k∈{1,…,n}} has only finitely many solutions in positive integers x_1,…,x_n, then each such solution (x_1,…,x_n) satisfies x_1,…,x_n⩽2^{2^{n−2}}. The statement Σ_6 proves the following implication: if the equation x(x+1)=y! has only finitely many solutions in positive integers x and y, then each such solution (x,y) belongs to the set {(1,2),(2,3)}. The statement Σ_6 proves the following implication: if the equation x!+1=y^2 has only finitely many solutions in positive integers x and y, then each such solution (x,y) belongs to the set {(4,5),(5,11),(7,71)}. The statement Σ_9 implies the infinitude of primes of the form n^2+1. The statement Σ_9 implies that any prime of the form n!+1 with n⩾2^{2^{9−3}} proves the infinitude of primes of the form n!+1. The statement Σ_{14} implies the infinitude of twin primes. The statement Σ_{16} implies the infinitude of Sophie Germain primes. We formulate a hypothesis which implies the infinitude of Wilson primes.

Url:


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">On sets X \subseteq \mathbb{N} for which we know an algorithm that computes a threshold number t(X) \in \mathbb{N} such that X is infinite if and only if X contains an element greater than t(X)</title>
<author>
<name sortKey="Tyszka, Apoloniusz" sort="Tyszka, Apoloniusz" uniqKey="Tyszka A" first="Apoloniusz" last="Tyszka">Apoloniusz Tyszka</name>
<affiliation wicri:level="1">
<hal:affiliation type="institution" xml:id="struct-522738" status="INCOMING">
<orgName>University of Agriculture in Krakow</orgName>
<desc>
<address>
<addrLine>Al. Mickiewicza 21 31-120 Krakow</addrLine>
<country key="PL"></country>
</address>
</desc>
</hal:affiliation>
<country>Pologne</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">HAL</idno>
<idno type="RBID">Hal:hal-01614087</idno>
<idno type="halId">hal-01614087</idno>
<idno type="halUri">https://hal.archives-ouvertes.fr/hal-01614087</idno>
<idno type="url">https://hal.archives-ouvertes.fr/hal-01614087</idno>
<date when="2019-01-08">2019-01-08</date>
<idno type="wicri:Area/Hal/Corpus">000001</idno>
<idno type="wicri:Area/Hal/Curation">000001</idno>
<idno type="wicri:Area/Hal/Checkpoint">000000</idno>
<idno type="wicri:explorRef" wicri:stream="Hal" wicri:step="Checkpoint">000000</idno>
<idno type="wicri:Area/Main/Merge">000000</idno>
<idno type="wicri:Area/Main/Curation">000000</idno>
<idno type="wicri:Area/Main/Exploration">000000</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">On sets X \subseteq \mathbb{N} for which we know an algorithm that computes a threshold number t(X) \in \mathbb{N} such that X is infinite if and only if X contains an element greater than t(X)</title>
<author>
<name sortKey="Tyszka, Apoloniusz" sort="Tyszka, Apoloniusz" uniqKey="Tyszka A" first="Apoloniusz" last="Tyszka">Apoloniusz Tyszka</name>
<affiliation wicri:level="1">
<hal:affiliation type="institution" xml:id="struct-522738" status="INCOMING">
<orgName>University of Agriculture in Krakow</orgName>
<desc>
<address>
<addrLine>Al. Mickiewicza 21 31-120 Krakow</addrLine>
<country key="PL"></country>
</address>
</desc>
</hal:affiliation>
<country>Pologne</country>
</affiliation>
</author>
</analytic>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="mix" xml:lang="en">
<term>Brocard's problem</term>
<term>Brocard-Ramanujan equation x!+1=y^2</term>
<term>Erdos' equation x(x+1)=y!</term>
<term>Richert's lemma</term>
<term>Sophie Germain primes</term>
<term>Wilson primes</term>
<term>composite Fermat numbers</term>
<term>prime numbers of the form n!+1</term>
<term>prime numbers of the form n^2+1</term>
<term>twin prime conjecture</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Let Γ_{n}(k) denote (k−1)!, where n∈{3,…,16} and k∈{2}∪{2^{2^{n−3}}+1, 2^{2^{n−3}}+2, 2^{2^{n−3}}+3,…}. For an integer n∈{3,…,16}, let Σ_n denote the following statement: if a system of equations S⊆{Γ_{n}(x_i)=x_k: i,k∈{1,…,n}}∪{x_i⋅x_j=x_k: i,j,k∈{1,…,n}} has only finitely many solutions in positive integers x_1,…,x_n, then each such solution (x_1,…,x_n) satisfies x_1,…,x_n⩽2^{2^{n−2}}. The statement Σ_6 proves the following implication: if the equation x(x+1)=y! has only finitely many solutions in positive integers x and y, then each such solution (x,y) belongs to the set {(1,2),(2,3)}. The statement Σ_6 proves the following implication: if the equation x!+1=y^2 has only finitely many solutions in positive integers x and y, then each such solution (x,y) belongs to the set {(4,5),(5,11),(7,71)}. The statement Σ_9 implies the infinitude of primes of the form n^2+1. The statement Σ_9 implies that any prime of the form n!+1 with n⩾2^{2^{9−3}} proves the infinitude of primes of the form n!+1. The statement Σ_{14} implies the infinitude of twin primes. The statement Σ_{16} implies the infinitude of Sophie Germain primes. We formulate a hypothesis which implies the infinitude of Wilson primes.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Pologne</li>
</country>
</list>
<tree>
<country name="Pologne">
<noRegion>
<name sortKey="Tyszka, Apoloniusz" sort="Tyszka, Apoloniusz" uniqKey="Tyszka A" first="Apoloniusz" last="Tyszka">Apoloniusz Tyszka</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Mathematiques/explor/SophieGermainV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000000 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000000 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Mathematiques
   |area=    SophieGermainV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     Hal:hal-01614087
   |texte=   On sets X \subseteq \mathbb{N} for which we know an algorithm that computes a threshold number t(X) \in \mathbb{N} such that X is infinite if and only if X contains an element greater than t(X)
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Fri Mar 8 09:40:56 2019. Site generation: Sat Nov 19 15:43:23 2022